LICENCE Sciences, Technologies, Santé MENTION Mathématiques
Accéder aux sections de la fiche
Call to actions
> 1ère année de licence : Nataliya SANDIER et Martin TRAIZET (L.AS1 : Jérôme DEPAUW)
> 2ème année de licence et L.AS2 : Boris ANDREIANOV
> 3ème année de licence : Jean-Baptiste GOUÉRÉ
Détails
Licence Accès Santé
Vous aimez les mathématiques et vous souhaitez faire des études de santé ?
Il existe un parcours ACCÈS SANTÉ dès la Licence 1 de Mathématiques : L.AS MATHÉMATIQUES
Toutes les infos sur le site accès santé
Parcours PEIP
Renseignements pratiques
- Structure(s) de rattachement
- Durée de la formation
-
- 3 ans
- Formation continue
- Formation diplômante
- Lieu(x) de la formation
- Tours
- Langues d'enseignement
-
Français
Accessible en
formation initiale, formation continue, contrat d'apprentissage
Les + de la formation
Statistiques
Résultats 2023/2024Taux de réussite des présents aux examens
> Evaluation de la formation
L1 Mathématiques
Effectifs 2024-2025 : 103
Taux de réussite 2023-2024 : 61,0 %
L1 Mathématiques (parcours PEip)
Effectifs 2024-2025 : 96
Taux de réussite 2023-2024 : 70,3 %
L2 Mathématiques
Effectifs 2024-2025 : 71
Taux de réussite 2023-2024 : 63,5 %
L2 Mathématiques (parcours PEip)
Effectifs 2024-2025 : 75
Taux de réussite 2023-2024 : 90,6 %
L3 Mathématiques
Effectifs 2024-2025 : 71
Taux de réussite 2023-2024 : 59,0 %
> Toutes les statistiques
Numéro RNCP
N° RNCP : 24518Présentation
Objectifs / compétences disciplinaires :
- Formation généraliste solide en mathématiques
- Initiation à la modélisation et la programmation
- Ouverture en L1 à la physique et à l'informatique
Lieux
Tours
Responsable(s) de la formation
> 1ère année de licence : Nataliya SANDIER et Martin TRAIZET (L.AS1 : Jérôme DEPAUW)
> 2ème année de licence et L.AS2 : Boris ANDREIANOV
> 3ème année de licence : Jean-Baptiste GOUÉRÉ
Admission
Niveau(x) de recrutement
Public ciblé
- Avoir le sens de l’organisation et de l’abstraction
- Être méthodique
- Aimer résoudre des problèmes
- Être régulier dans son travail
Candidature
Modalités de candidature
Licence 1 : Pré-inscription sur www.parcoursup.fr
Licence 2 ou Licence 3 : Candidature sur ecandidat via la procédure de validation des acquisModalités de candidature spécifiques
Formation continue et reprise d'études
Cette licence est également accessible dans le cadre de la formation continue, avec éventuellement des validations d'acquis.
Programme
Contenu de la formation
Licence 1
Semestre 1
Module 1 Algèbre 1 (60h cours-TD)
Module 2 Analyse 1 (60h cours-TD)
Module 3 Option :
- Physique (CM+TD+TP)
- Informatique (CM+TD+TP)
Module 4 : Module complémentaire
- Programmation
- Anglais (18h TD)
- Méthodologie (4h TD)
- Outils documentaires (6h TD)
Semestre 2
Module 1 Algèbre 2 (24h CM + 36h TD)
Module 2 Analyse 2 (24h CM + 36h TD)
Module 3 Option :
- Physique (CM+TD+TP)
- Informatique (CM+TD+TP)
Module 4 Module complémentaire :
- Python 2 (18h TD + 18h TP)
- Anglais (18h TD)
- Méthodologie (4h TD)
- Mobil (4h TD)
Licence 2
Semestre 3
Module 1 Algèbre 3 (33h CM + 33h TD)
Module 2 Analyse 3 (33h CM + 33h TD)
Module 3 :
- Arithmétique (16h CM + 17h TD)
- Structures math. (16h CM + 17h TD)
Module 4 Module complémentaire :
- Programmation (20h TP)
- Anglais (18h TD)
- Compétences numériques (18h TD)
- Mobil (4h TD)
Semestre 4
Module 1 Algèbre 4 (33h CM + 33h TD)
Module 2 Analyse 4 (33h CM + 33h TD)
Module 3 :
- Proba discrètes (16h CM + 17h TD)
- Fonctions de Rn (16h CM + 17h TD)
Module 4 Module complémentaire :
- Modélisation (10h CM + 14h TP)
- Anglais (18h TD)
- Cercip (18h TD)
Licence 3
Semestre 5
Module 1 Théorie des groupes (33h CM + 33h TD)
Module 2 Topologie (33h CM + 33h TD)
Module 3 Intégration (33h CM + 33h TD)
Module 4 Module complémentaire :
- Anglais (18h TD)
- Cercip (18h TD)
Semestre 6
Module 1 Algèbre approfondies (33h CM + 33h TD)
Module 2 Calcul et équations différentielles (33h CM + 33h TD)
Module 3 Probabilité (30h CM + 30h TD + 6h TP)
Module 4 Module complémentaire :
- Anglais (18h TD)
- Mémoire recherche ou enseignement
-
-
Semestre 1 SL1MAM
-
- EP1.1 Algèbre 1 TD (Élément Constitutif)60 h - 8 Crédits ECTS
EP1.1 Algèbre 1 TD
Élément Constitutif 60 h - 8 Crédits ECTS
En savoir plus -
- EP1.2 Analyse 1 TD (Élément Constitutif)60 h - 8 Crédits ECTS
EP1.2 Analyse 1 TD
Élément Constitutif 60 h - 8 Crédits ECTS
En savoir plus -
-
- EP1.1.1 Algorithmique et programmation 1: Impérative TP (Travaux Pratiques)30 h
- EP1.1.1 Algorithmique et programmation 1:Impérative TD (Travaux Dirigés)18 h
- EP1.1.1 Algorithmique et programmation1: Impérative CM (Cours Magistral)12 h
EP1.1.1 Algorithmique et programmation 1: Impérative TP
Travaux Pratiques 30 h
En savoir plusEP1.1.1 Algorithmique et programmation 1:Impérative TD
Travaux Dirigés 18 h
En savoir plusEP1.1.1 Algorithmique et programmation1: Impérative CM
Cours Magistral 12 h
En savoir plus -
- EP1.1.1 Outils mathématiques pour la physique 1 TD (Élément Constitutif)30 h - 3 Crédits ECTS
-
- EP1.1.2 Mécanique 1 TD (Travaux Dirigés)27 h
- EP1.1.2 Mécanique 1 TP (Travaux Pratiques)3 h
EP1.1.2 Mécanique 1 TD
Travaux Dirigés 27 h
En savoir plusEP1.1.2 Mécanique 1 TP
Travaux Pratiques 3 h
En savoir plus
EP1.1.1 Outils mathématiques pour la physique 1 TD
Élément Constitutif 30 h - 3 Crédits ECTS
En savoir plusEP1.1.2 Mécanique 1
Élément Constitutif 30 h - 5 Crédits ECTS
En savoir plus
EP1.1.1 Algorithmique et programmation 1: Impérative
Élément Constitutif 60 h - 8 Crédits ECTS
En savoir plusM1.3.A Option Physique
Élément Constitutif 60 h - 8 Crédits ECTS
En savoir plus -
-
-
-
- EP1.2.2 Architecture et Système TP (Travaux Pratiques)6 h
- EP1.2.2 Architecture et système CM (Cours Magistral)10 h
- EP1.2.2 Architecture et système TD (Travaux Dirigés)10 h
EP1.2.2 Architecture et Système TP
Travaux Pratiques 6 h
En savoir plusEP1.2.2 Architecture et système CM
Cours Magistral 10 h
En savoir plusEP1.2.2 Architecture et système TD
Travaux Dirigés 10 h
En savoir plus -
- EP1.4.1a Programmation - Python 1 TD (Travaux Dirigés)18 h
- EP1.4.1a Programmation - Python 1 TP (Travaux Pratiques)18 h
EP1.4.1a Programmation - Python 1 TD
Travaux Dirigés 18 h
En savoir plusEP1.4.1a Programmation - Python 1 TP
Travaux Pratiques 18 h
En savoir plus
EP1.2.2 Architecture et Système
Élément Constitutif 26 h - 4 Crédits ECTS
En savoir plusEP1.4.1a Programmation - Python 1
Élément Constitutif 36 h - 4 Crédits ECTS
En savoir plus -
- EP1.4.2 Anglais TD (Élément Constitutif)18 h - 2 Crédits ECTS
- EP1.4.3 Méthodologie TD4 h
- EP1.4.4 Outils documentaires TD6 h
EP1.4.1 à choix
EP1.4.2 Anglais TD
Élément Constitutif 18 h - 2 Crédits ECTS
En savoir plusEP1.4.3 Méthodologie TD
4 h
En savoir plusEP1.4.4 Outils documentaires TD
6 h
En savoir plus -
M1.1 Algèbre 1
UE 60 h - 8 Crédits ECTS
En savoir plusM1.2 Analyse 1
UE 60 h - 8 Crédits ECTS
En savoir plusM1.3 Module 3 à choix
UE 60 h
En savoir plusM1.4 Complémentaire
UE - 6 Crédits ECTS
En savoir plus -
-
Semestre 2 SL1MAM
-
-
- EP2.1 Algèbre 2 CM (Cours Magistral)24 h
- EP2.1 Algèbre 2 TD (Travaux Dirigés)36 h
EP2.1 Algèbre 2 CM
Cours Magistral 24 h
En savoir plusEP2.1 Algèbre 2 TD
Travaux Dirigés 36 h
En savoir plus
EP2.1 Algèbre 2
Élément Constitutif 60 h - 8 Crédits ECTS
En savoir plus -
-
-
- EP2.2 Analyse 2 CM (Cours Magistral)24 h
- EP2.2 Analyse 2 TD (Travaux Dirigés)36 h
EP2.2 Analyse 2 CM
Cours Magistral 24 h
En savoir plusEP2.2 Analyse 2 TD
Travaux Dirigés 36 h
En savoir plus
EP2.2 Analyse 2
Élément Constitutif 60 h - 8 Crédits ECTS
En savoir plus -
-
-
-
- EP2.1.1 Mécanique 2 CM (Cours Magistral)12 h
- EP2.1.1 Mécanique 2 TD (Travaux Dirigés)16 h
- EP2.1.1 Mécanique 2 TP (Travaux Pratiques)2 h
EP2.1.1 Mécanique 2 CM
Cours Magistral 12 h
En savoir plusEP2.1.1 Mécanique 2 TD
Travaux Dirigés 16 h
En savoir plusEP2.1.1 Mécanique 2 TP
Travaux Pratiques 2 h
En savoir plus -
- EP2.1.2 Oscillateurs CM (Cours Magistral)10 h
- EP2.1.2 Oscillateurs TD (Travaux Dirigés)16 h
- EP2.1.2 Oscillateurs TP (Travaux Pratiques)2 h
EP2.1.2 Oscillateurs CM
Cours Magistral 10 h
En savoir plusEP2.1.2 Oscillateurs TD
Travaux Dirigés 16 h
En savoir plusEP2.1.2 Oscillateurs TP
Travaux Pratiques 2 h
En savoir plus
EP2.1.1 Mécanique 2
Élément Constitutif 30 h - 5 Crédits ECTS
En savoir plusEP2.1.2 Oscillateurs
Élément Constitutif 28 h - 3 Crédits ECTS
En savoir plus -
-
-
- EP2.2.1 Introduction aux Bases de données CM (Cours Magistral)10 h
- EP2.2.1 Introduction aux Bases de données TD (Travaux Dirigés)6 h
- EP2.2.1 Introduction aux Bases de données TP (Travaux Pratiques)14 h
EP2.2.1 Introduction aux Bases de données CM
Cours Magistral 10 h
En savoir plusEP2.2.1 Introduction aux Bases de données TD
Travaux Dirigés 6 h
En savoir plusEP2.2.1 Introduction aux Bases de données TP
Travaux Pratiques 14 h
En savoir plus -
- EP2.1.2 Programmation Web C/S TD (Travaux Dirigés)16 h
- EP2.1.2 Programmation Web C/SV TP (Travaux Pratiques)14 h
EP2.1.2 Programmation Web C/S TD
Travaux Dirigés 16 h
En savoir plusEP2.1.2 Programmation Web C/SV TP
Travaux Pratiques 14 h
En savoir plus
Introduction Bases de Données
Élément Constitutif 30 h - 4 Crédits ECTS
En savoir plusProgrammation Web C/S
Élément Constitutif 30 h - 4 Crédits ECTS
En savoir plus -
M2.3a Option Physique
Élément Constitutif 60 h - 8 Crédits ECTS
En savoir plusM2.3b Option Informatique
Élément Constitutif 60 h - 8 Crédits ECTS
En savoir plus -
-
-
- EP2.4.1 Programmation - Python 2 TD (Travaux Dirigés)18 h
- EP2.4.1 Programmation - Python 2 TP (Travaux Pratiques)18 h
EP2.4.1 Programmation - Python 2 TD
Travaux Dirigés 18 h
En savoir plusEP2.4.1 Programmation - Python 2 TP
Travaux Pratiques 18 h
En savoir plus - EP2.4.2 Anglais TD (Élément Constitutif)18 h - 2 Crédits ECTS
- EP2.4.3 Méthodologie TD4 h
-
- EP2.4.4 MOBIL CM (Cours Magistral)2 h
- EP2.4.4 MOBIL TD (Travaux Dirigés)2 h
EP2.4.4 MOBIL CM
Cours Magistral 2 h
En savoir plusEP2.4.4 MOBIL TD
Travaux Dirigés 2 h
En savoir plus
EP2.4.1 Programmation - Python 2
Élément Constitutif 36 h - 4 Crédits ECTS
En savoir plusEP2.4.2 Anglais TD
Élément Constitutif 18 h - 2 Crédits ECTS
En savoir plusEP2.4.3 Méthodologie TD
4 h
En savoir plusEP2.4.4 MOBIL
4 h
En savoir plus -
M2.1 Algèbre 2
UE 60 h - 8 Crédits ECTS
En savoir plusM2.2 Analyse 2
UE 60 h - 8 Crédits ECTS
En savoir plusM2.3 Module 3 à choix
M2.4 Complémentaire
UE 62 h - 6 Crédits ECTS
En savoir plus -
-
Semestre 3
-
-
- EP3.1 Algèbre 3 TD (Travaux Dirigés)33 h
- EP3.1 Algèbre 3 CM (Cours Magistral)33 h
EP3.1 Algèbre 3 TD
Travaux Dirigés 33 h
En savoir plusEP3.1 Algèbre 3 CM
Cours Magistral 33 h
En savoir plus
EP3.1 Algèbre 3
Élément Constitutif 66 h - 8 Crédits ECTS
En savoir plus -
-
-
- EP3.2 Analyse 3 CM (Cours Magistral)33 h
- EP3.2 Analyse 3 TD (Travaux Dirigés)33 h
EP3.2 Analyse 3 CM
Cours Magistral 33 h
En savoir plusEP3.2 Analyse 3 TD
Travaux Dirigés 33 h
En savoir plus
EP3.2 Analyse 3
Élément Constitutif 66 h - 8 Crédits ECTS
En savoir plus -
-
-
- EP3.3.1 Arithmétique CM (Cours Magistral)16 h
- EP3.3.1 Arithmétique TD (Travaux Dirigés)17 h
EP3.3.1 Arithmétique CM
Cours Magistral 16 h
En savoir plusEP3.3.1 Arithmétique TD
Travaux Dirigés 17 h
En savoir plus -
- EP3.3.2 Structures mathématiques CM (Cours Magistral)16 h
- EP3.3.2 Structures mathématiques TD (Travaux Dirigés)17 h
EP3.3.2 Structures mathématiques CM
Cours Magistral 16 h
En savoir plusEP3.3.2 Structures mathématiques TD
Travaux Dirigés 17 h
En savoir plus
EP3.3.1 Arithmétique
Élément Constitutif 33 h - 4 Crédits ECTS
En savoir plusEP3.3.2 Structures mathématiques
Élément Constitutif 33 h - 4 Crédits ECTS
En savoir plus -
-
- EP3.4.1 Programmation TP (Élément Constitutif)20 h - 2 Crédits ECTS
- EP3.4.2 Anglais TD (Élément Constitutif)18 h - 2 Crédits ECTS
- EP3.4.3 Compétences numériques TD (Élément Constitutif)18 h - 2 Crédits ECTS
-
- EP3.4.4 Mobil CM (Cours Magistral)2 h
- EP3.4.4 Mobil TD (Travaux Dirigés)2 h
EP3.4.4 Mobil CM
Cours Magistral 2 h
En savoir plusEP3.4.4 Mobil TD
Travaux Dirigés 2 h
En savoir plus
EP3.4.1 Programmation TP
Élément Constitutif 20 h - 2 Crédits ECTS
En savoir plusEP3.4.2 Anglais TD
Élément Constitutif 18 h - 2 Crédits ECTS
En savoir plusEP3.4.3 Compétences numériques TD
Élément Constitutif 18 h - 2 Crédits ECTS
En savoir plusEP3.4.4 Mobil
4 h
En savoir plus
M3.1 Algèbre 3
UE 66 h - 8 Crédits ECTS
En savoir plusM3.2 Analyse 3
UE 66 h - 8 Crédits ECTS
En savoir plusM3.3 Arithmétique et structures mathématiques
UE 66 h - 8 Crédits ECTS
En savoir plusM3.4 Complémentaire
UE 60 h - 6 Crédits ECTS
En savoir plus -
-
Semestre 4
-
-
- EP4.1 Algèbre 4 CM (Cours Magistral)33 h
- EP4.1 Algèbre 4 TD (Travaux Dirigés)33 h
EP4.1 Algèbre 4 CM
Cours Magistral 33 h
En savoir plusEP4.1 Algèbre 4 TD
Travaux Dirigés 33 h
En savoir plus
EP4.1 Algèbre 4
Élément Constitutif 66 h - 8 Crédits ECTS
En savoir plus -
-
-
- EP4.2 Analyse 4 CM (Cours Magistral)33 h
- EP4.2 Analyse 4 TD (Travaux Dirigés)33 h
EP4.2 Analyse 4 CM
Cours Magistral 33 h
En savoir plusEP4.2 Analyse 4 TD
Travaux Dirigés 33 h
En savoir plus
EP4.2 Analyse 4
Élément Constitutif 66 h - 8 Crédits ECTS
En savoir plus -
-
-
- EP4.3.1 Probabilités TD (Travaux Dirigés)17 h
- EP4.3.1 Probabilités CM (Cours Magistral)16 h
EP4.3.1 Probabilités TD
Travaux Dirigés 17 h
En savoir plusEP4.3.1 Probabilités CM
Cours Magistral 16 h
En savoir plus -
- EP4.3.2 Fonctions de plusieurs variables CM (Cours Magistral)16 h
- EP4.3.2 Fonctions de plusieurs variables TD (Travaux Dirigés)17 h
EP4.3.2 Fonctions de plusieurs variables CM
Cours Magistral 16 h
En savoir plusEP4.3.2 Fonctions de plusieurs variables TD
Travaux Dirigés 17 h
En savoir plus
EP4.3.1 Probabilités
Élément Constitutif 33 h - 4 Crédits ECTS
En savoir plusEP4.3.2 Fonctions de plusieurs variables
Élément Constitutif 33 h - 4 Crédits ECTS
En savoir plus -
-
-
- EP4.4.1 Modélisation CM (Cours Magistral)10.5 h
- EP4.4.1 Modélisation TP (Travaux Pratiques)13.5 h
EP4.4.1 Modélisation CM
Cours Magistral 10.5 h
En savoir plusEP4.4.1 Modélisation TP
Travaux Pratiques 13.5 h
En savoir plus - EP4.4.2 Anglais TD (Élément Constitutif)18 h - 2 Crédits ECTS
- EP4.4.3 Transition Ecologique Sociétable TD (Élément Constitutif)18 h - 2 Crédits ECTS
EP4.4.1 Modélisation
Élément Constitutif 24 h - 2 Crédits ECTS
En savoir plusEP4.4.2 Anglais TD
Élément Constitutif 18 h - 2 Crédits ECTS
En savoir plusEP4.4.3 Transition Ecologique Sociétable TD
Élément Constitutif 18 h - 2 Crédits ECTS
En savoir plus -
M4.1 Algèbre 4
UE 66 h - 8 Crédits ECTS
En savoir plusM4.2 Analyse 4
UE 66 h - 8 Crédits ECTS
En savoir plusM4.3 Probabilités et fonctions de plusieurs variables
UE 66 h - 8 Crédits ECTS
En savoir plusM4.4 Complémentaire
UE 60 h - 6 Crédits ECTS
En savoir plus -
-
Semestre 5 MAM
-
-
- EP5.1 Algèbre 5 CM (Cours Magistral)33 h
- EP5.1 Algèbre 5 TD (Travaux Dirigés)33 h
EP5.1 Algèbre 5 CM
Cours Magistral 33 h
En savoir plusEP5.1 Algèbre 5 TD
Travaux Dirigés 33 h
En savoir plus
EP5.1 Algèbre 5
Élément Constitutif 66 h - 8 Crédits ECTS
En savoir plus -
-
-
- EP5.2 Intégration CM (Cours Magistral)33 h
- EP5.2 Intégration TD (Travaux Dirigés)33 h
EP5.2 Intégration CM
Cours Magistral 33 h
En savoir plusEP5.2 Intégration TD
Travaux Dirigés 33 h
En savoir plus
EP5.2 Intégration
Élément Constitutif 66 h - 8 Crédits ECTS
En savoir plus -
-
-
- EP5.3 Topologie CM (Cours Magistral)33 h
- EP5.3 Topologie TD (Travaux Dirigés)33 h
EP5.3 Topologie CM
Cours Magistral 33 h
En savoir plusEP5.3 Topologie TD
Travaux Dirigés 33 h
En savoir plus
EP5.3 Topologie
Élément Constitutif 66 h - 8 Crédits ECTS
En savoir plus -
-
- EP5.4.1 Initiation à la recherche et à l'enseignement TD (Élément Constitutif)18 h - 2 Crédits ECTS
- EP5.4.2 Anglais TD (Élément Constitutif)18 h - 2 Crédits ECTS
- EP5.4.3 Cercip (Élément Constitutif)18 h - 2 Crédits ECTS
-
- EP5.4.4 MOBIL CM (Cours Magistral)2 h
- EP5.4.4 MOBIL TD (Travaux Dirigés)2 h
EP5.4.4 MOBIL CM
Cours Magistral 2 h
En savoir plusEP5.4.4 MOBIL TD
Travaux Dirigés 2 h
En savoir plus
EP5.4.1 Initiation à la recherche et à l'enseignement TD
Élément Constitutif 18 h - 2 Crédits ECTS
En savoir plusEP5.4.2 Anglais TD
Élément Constitutif 18 h - 2 Crédits ECTS
En savoir plusEP5.4.3 Cercip
Élément Constitutif 18 h - 2 Crédits ECTS
En savoir plusEP5.4.4 MOBIL
4 h
En savoir plus
M5.1 Algèbre 5
UE 66 h - 8 Crédits ECTS
En savoir plusM5.2 Intégration
UE 66 h - 8 Crédits ECTS
En savoir plusM5.3 Topologie
UE 66 h - 8 Crédits ECTS
En savoir plusM5.4 Complémentaire
UE 58 h - 6 Crédits ECTS
En savoir plus -
-
Semestre 6 MAM
-
-
- EP6.1 Algèbre 6 CM (Cours Magistral)33 h
- EP6.1 Algèbre 6 TD (Travaux Dirigés)33 h
EP6.1 Algèbre 6 CM
Cours Magistral 33 h
En savoir plusEP6.1 Algèbre 6 TD
Travaux Dirigés 33 h
En savoir plus
EP6.1 Algèbre 6
Élément Constitutif 66 h - 8 Crédits ECTS
En savoir plus -
-
-
- EP6.2 Calcul différentiel et équations différentielles CM (Cours Magistral)33 h
- EP6.2 Calcul différentiel et équations différentielles TD (Travaux Dirigés)33 h
EP6.2 Calcul différentiel et équations différentielles CM
Cours Magistral 33 h
En savoir plusEP6.2 Calcul différentiel et équations différentielles TD
Travaux Dirigés 33 h
En savoir plus
EP6.2 Calcul différentiel et équations différentielles
Élément Constitutif 66 h - 8 Crédits ECTS
En savoir plus -
-
-
- EP6.3 Probabilités CM (Cours Magistral)30 h
- EP6.3 Probabilités TD (Travaux Dirigés)30 h
- EP6.3 Probabilités TP (Travaux Pratiques)6 h
EP6.3 Probabilités CM
Cours Magistral 30 h
En savoir plusEP6.3 Probabilités TD
Travaux Dirigés 30 h
En savoir plusEP6.3 Probabilités TP
Travaux Pratiques 6 h
En savoir plus
EP6.3 Probabilités
Élément Constitutif 66 h - 8 Crédits ECTS
En savoir plus -
-
- EP6.4.1 Initiation à la recherche et à l'enseignement TD (Élément Constitutif)40 h - 4 Crédits ECTS
- EP6.4.2 Anglais TD (Élément Constitutif)18 h - 2 Crédits ECTS
EP6.4.1 Initiation à la recherche et à l'enseignement TD
Élément Constitutif 40 h - 4 Crédits ECTS
En savoir plusEP6.4.2 Anglais TD
Élément Constitutif 18 h - 2 Crédits ECTS
En savoir plus
M6.1 Algèbre 6
UE 66 h - 8 Crédits ECTS
En savoir plusM6.2 Calcul différentiel et équations différentielles
UE 66 h - 8 Crédits ECTS
En savoir plusM6.3 Probabilités
UE 66 h - 8 Crédits ECTS
En savoir plusM6.4 Complémentaire
UE 40 h - 6 Crédits ECTS
En savoir plus -
-
S3
S3 : Semestre 3 SL2MAM
S1
S1 : Semestre 1 SL1MAM
S5
S4
S4 : Semestre 4 SL2MAM
S2
S2 : Semestre 2 SL1MAM
S6
S6 : Semestre 6 MAM
Évaluation
Et après ?
Niveau de sortie
Compétences visées
URL Fiche RNCP
Poursuites d'études
Au sein de l'université, l'étudiant titulaire de la licence de mathématiques peut poursuivre par :
- le master Mathématiques et Applications (cours à Tours ; master cohabilité entre les universités d'Orléans et de Tours)
- le master Mathématiques Appliquées, Statistiques (cours à Orléans ; master cohabilité entre les universités d'Orléans et de Tours)
- le master MEEF 2nd degré Mathématiques
- le master MEEF 1er degré
En dehors de l'université, la licence de mathématiques ouvre notamment à toutes les formations requérant une formation de premier cycle solide en mathématiques (masters de mathématiques, écoles d'ingénieurs, actuariat, ...).
Débouchés professionnels
Secteurs d'activité ou type d'emploi
Les titulaires de la licence poursuivent majoritairement leurs études (master, école spécialisée, grande école...). Ils se dirigent ensuite vers les métiers des probabilités, des statistiques, de la sécurité informatique, de l'enseignement, de la recherche, de l'ingénierie... dans différents secteurs (industrie, banque, finance, médecine...).
Exemples de métiers le plus souvent après un bac + 5 : actuaire (projection en calcul de risques) ; analyste financier/ère ; biostatisticien/ne ; cryptographe ; data scientist ; enseignant/e-chercheur/euse ; enseignant/e dans les écoles, les collèges ou les lycées ; ingénieur/e calcul ; responsable de sécurité informatique ; statisticien/ne
Insertion professionnelle
> Plus d'informations sur le site de la MOIP